acm - an acm publication

2017 - August

  • Computational design

    Computational thinking refers to a deliberative process that finds a computational solution for a concern. Computational doing refers to use of computation and computational tools to address concerns. Computational design refers to creating new computational tools and methods that are adopted by the members of a community to address their concerns. Unfortunately, the definitions of both "thinking" and "doing" are fuzzy and have allowed misconceptions about the nature of algorithms. Fortunately, it is possible to eliminate the fuzziness in the definitions by focusing on computational design, which is at the intersection between thinking and doing. Computational design is what we are really after and would be a good substitute for computational thinking and doing.

  • Why writing short sentences may be short-changing your reader

    Each "Communication Corner" essay is self-contained; however, they build on each other. For best results, before reading this essay and doing the exercise, go to the first essay "How an Ugly Duckling Became a Swan," then read each succeeding essay.

2018 Symposia

Ubiquity symposium is an organized debate around a proposition or point of view. It is a means to explore a complex issue from multiple perspectives. An early example of a symposium on teaching computer science appeared in Communications of the ACM (December 1989).

To organize a symposium, please read our guidelines.

 

Ubiquity Symposium: Big Data

Table of Contents

  1. Big Data, Digitization, and Social Change (Opening Statement) by Jeffrey Johnson, Peter Denning, David Sousa-Rodrigues, Kemal A. Delic
  2. Big Data and the Attention Economy by Bernardo A. Huberman
  3. Big Data for Social Science Research by Mark Birkin
  4. Technology and Business Challenges of Big Data in the Digital Economy by Dave Penkler
  5. High Performance Synthetic Information Environments: An integrating architecture in the age of pervasive data and computing By Christopher L. Barrett, Jeffery Johnson, and Madhav Marathe
  6. Developing an Open Source "Big Data" Cognitive Computing Platform by Michael Kowolenko and Mladen Vouk
  7. When Good Machine Learning Leads to Bad Cyber Security by Tegjyot Singh Sethi and Mehmed Kantardzic
  8. Corporate Security is a Big Data Problem by Louisa Saunier and Kemal Delic
  9. Big Data: Business, technology, education, and science by Jeffrey Johnson, Luca Tesei, Marco Piangerelli, Emanuela Merelli, Riccardo Paci, Nenad Stojanovic, Paulo Leitão, José Barbosa, and Marco Amador
  10. Big Data or Big Brother? That is the question now (Closing Statement) by Jeffrey Johnson, Peter Denning, David Sousa-Rodrigues, Kemal A. Delic