acm - an acm publication

2018 - March

  • Developing an Open Source 'Big Data' Cognitive Computing Platform: Big Data (Ubiquity symposium)

    The ability to leverage diverse data types requires a robust and dynamic approach to systems design. The needs of a data scientist are as varied as the questions being explored. Compute systems have focused on the management and analysis of structured data as the driving force of analytics in business. As open source platforms have evolved, the ability to apply compute to unstructured information has exposed an array of platforms and tools available to the business and technical community. We have developed a platform that meets the needs of the analytics user requirements of both structured and unstructured data. This analytics workbench is based on acquisition, transformation, and analysis using open source tools such as Nutch, Tika, Elastic, Python, PostgreSQL, and Django to implement a cognitive compute environment that can handle widely diverse data, and can leverage the ever-expanding capabilities of infrastructure in order to provide intelligence augmentation.

  • High Performance Synthetic Information Environments
    An integrating architecture in the age of pervasive data and computing: Big Data (Ubiquity symposium)

    The complexities of social and technological policy domains, such as the economy, the environment, and public health, present challenges that require a new approach to modeling and decision-making. The information required for effective policy and decision making in these complex domains is massive in scale, fine-grained in resolution, and distributed over many data sources. Thus, one of the key challenges in building systems to support policy informatics is information integration. Synthetic information environments (SIEs) present a methodological and technological solution that goes beyond the traditional approaches of systems theory, agent-based simulation, and model federation. An SIE is a multi-theory, multi-actor, multi-perspective system that supports continual data uptake, state assessment, decision analysis, and action assignment based on large-scale high-performance computing infrastructures. An SIE allows rapid course-of-action analysis to bound variances in outcomes of policy interventions, which in turn allows the short time-scale planning required in response to emergencies such as epidemic outbreaks.