acm - an acm publication

2015 - November

  • Fog Computing Distributing Data and Intelligence for Resiliency and Scale Necessary for IoT: The Internet of Things (Ubiquity symposium)

    The Internet of Everything (IoE) is more than a $19 trillion opportunity over 10 years. Fifty billions of devices will be connected to various networks in 2020. This is bringing new technical challenges in all domains and specifically in the data processing. Distributed intelligence is one of the key technological answers. We call it "fog computing." Fog can provide intelligent connection of people, processes, data, and things in hierarchical Internet of Things networks. By supplementing the cloud and providing intermediate layers of computation, networking, and storage, fog nodes can optimize IoE deployments---greatly enhancing latency, bandwidth, reliability, security, and overall IoE network performance. The article will analyze the architecture and main design choices of this technology.

  • A Case for Interoperable IoT Sensor Data and Meta-data Formats: The Internet of Things (Ubiquity symposium)

    While much attention has been focused on building sensing systems and backing cloud infrastructure in the Internet of things/Web of things (IoT/WoT) community, enabling third-party applications and services that can operate across domains and across devices has not been given much consideration. The challenge for the community is to devise standards and practices that enable integration of data from sensors across devices, users, and domains to enable new types of applications and services that facilitate much more comprehensive understanding and quantitative insights into the world around us.

  • Standards for Tomorrow: The Internet of Things (Ubiquity symposium)

    Over the decades, standards have been critical for defining how to interconnect computer and networking devices across different vendors so they can seamlessly work together. Standards have been critical, not only in networking and computer interfaces, but also at the operating system and systems software level. There are many examples, such as IEEE 802, POSIX, IETF, and W3C. There was always the question of the right time to standardize (not too early and not too late), and the time to complete a standardization project always seemed too long, but inevitable. However, the contemporary industry seems to be more dynamic and evolving than it has ever been, demanding more agile processes. Open source processes and software defined (networks, storage, data centers, etc.) offer alternatives to standards. In this article we attempt to envision the future role of standards, and how they will complement and enhance alternative choices toward the same goal. We first summarize traditional standards, then discuss alternatives and a couple of use cases, and conclude with some future directions and opportunities for standardization.