acm - an acm publication

2014 - May

  • Offering Verified Credentials in Massive Open Online Courses: MOOCs and technology to advance learning and learning research (Ubiquity symposium)
    Massive open online courses (MOOCs) enable the delivery of high-quality educational experiences to large groups of students. Coursera, one of the largest MOOC providers, developed a program to provide students with verified credentials as a record of their MOOC performance. Such credentials help students convey achievements in MOOCs to future employers and academic programs. This article outlines the process and biometrics Coursera uses to establish and verify student identity during a course. We additionally present data that suggest verified certificate programs help increase student success rates in courses.
  • The Multicore Transformation Opening Statement: The multicore transformation (Ubiquity symposium)
    Chips with multiple processors, called multicore chips, have caused a resurgence of interest in parallel computing. Multicores are now available in servers, PCs, laptops, embedded systems, and mobile devices. Because multiprocessors could be mass-produced for the same cost as uniprocessors, parallel programming is no longer reserved for a small elite of programmers such as operating system developers, database system designers, and supercomputer users. Thanks to multicore chips, everyone's computer is a parallel machine. Parallel computing has become ubiquitous. In this symposium, seven authors examine what it means for computing to enter the parallel age.
  • Data-driven Learner Modeling to Understand and Improve Online Learning: MOOCs and technology to advance learning and learning research (Ubiquity symposium)
    Advanced educational technologies are developing rapidly and online MOOC courses are becoming more prevalent, creating an enthusiasm for the seemingly limitless data-driven possibilities to affect advances in learning and enhance the learning experience. For these possibilities to unfold, the expertise and collaboration of many specialists will be necessary to improve data collection, to foster the development of better predictive models, and to assure models are interpretable and actionable. The big data collected from MOOCs needs to be bigger, not in its height (number of students) but in its width more meta-data and information on learners' cognitive and self-regulatory states needs to be collected in addition to correctness and completion rates. This more detailed articulation will help open up the black box approach to machine learning models where prediction is the primary goal. Instead, a data-driven learner model approach uses fine grain data that is conceived and developed from cognitive principles to build explanatory models with practical implications to improve student learning.